WINTER - 19EXAMINATIONS

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

		$2^{\mathrm{n}}=\mathrm{m}$ $\mathrm{n}=$ no.of flip flops requried $\mathrm{m}=$ no.of states $2^{\mathrm{n}}=16$ $\mathrm{n}=4$ 4 flip flops are required to count 16 clock pulse.	
	g)	List the types of DAC	2M
	Ans:	1) Binary weighted DAC 2) $\mathrm{R}-2 \mathrm{R}$ ladder network DAC	$\mathbf{1 M}$ each

	Ans:	$\begin{aligned} & F_{1}=\sum_{m}(0,2,4,6) \quad \text { (4 marks) } \\ & f_{2}=\sum_{m}(1,3,5) \end{aligned}$	4M
Q. 3		Attempt any THREE of the following:	12-Total Marks
	a)	Realize the following logic expression using only NAND gates. (i) OR (ii) AND (iii)NOT	4M
	Ans:	(i)OR OR gate from NAND gates (ii)AND AND gate (ii)NOT (out put A bar)	$11 / 2 \mathrm{M}$ $11 / 2 \mathrm{M}$ 1M

G3 $=$ B3
K-MAP FOR G2

$\mathrm{G} 2=\overline{B 3} \mathrm{~B} 2+\overline{B 2} \mathrm{~B} 3$
=B3 XOR B2
K-MAP FOR G1:

tified)
DEGREE \& DIPLOMA

1M

2M
The JK flip flop is basically a gated SR flip-flop with the addition of a clock input circuitry that prevents the illegal or invalid output condition that can occur when both inputs S and R are equal to logic level " 1 ". Due to this additional clocked input, a JK flip-flop has four possible input combinations, "logic 1", "logic 0", "no change" and "toggle".
Both the S and the R inputs of the previous SR bistable have now been replaced by two inputs called the J and K inputs, respectively after its inventor Jack Kilby. Then this equates to: $\mathrm{J}=\mathrm{S}$ and $\mathrm{K}=\mathrm{R}$.
The two 2-input AND gates of the gated SR bistable have now been replaced by two 3input NAND gates with the third input of each gate connecte to the outputs at Q and Q . This cross coupling of the SR flip-flop allows the previously invalid condition of $S=$ " 1 " and $\mathrm{R}=$ " 1 " state to be used to produce a "toggle action" as the two inputs are now interlocked.
If the circuit is now "SET" the J input is inhibited by the " 0 " status
Of Q through the lower NAND gate. If the circuit is "RESET" the K input is inhibited by the " 0 " status of Q through the upper NAND gate, As Q and Q are always different we can use them to control the input. When both inputs J and K are equal to logic © 1 ", the JK flip flop toggles

Working:
The DATA leaves the shift register one bit at a time in a serial pattern, hence the name Serial-in to Serial-Out Shift Register or SISO.
The SISO shift register is one of the simplest of the four configurations as it has only three connections, the serial input (SI) which determines what enters the left hand flip-flop, the serial output (SO) which is taken from the output of the right hand flip-flop and the sequencing clock signal (Clk). The logic circuit diagram below shows a generalized serialin serial-out shift register, Output of FFA is $\mathrm{Q}_{4}, \mathrm{FFB} \mathrm{Q}_{3}, \mathrm{FFC} \mathrm{Q}_{2}$ and FFD is Q_{1}

Truth Table:

Input			Output	
A	B	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Truth

table $11 / 2$
M

(ISO/IEC - 2700
tified)

ii)EPROM with EEPROM.

1M(Any
two point each)

4M

Working:

The successive approximation A/D converter is as shown in fig. An analog voltage (Va) is constantly compared with voltage Vi, using a comparator. The output produced by comparator (Vo) is applied to an electronic Programmer. If $\mathrm{Va}=\mathrm{Vi}$, then $\mathrm{Vo}=0$ \& then no conversion is required. The programmer displays the value of Vi in the form of digital O/P. But if Va Vi , then the O / P is changed by the programmer. If $\mathrm{Va}>\mathrm{Vi}$, then value of Vi is increased by 50% of earlier value. But if $\mathrm{Va}<\mathrm{Vi}$, then value of Vi is decreased by 50% of earlier value.
This new value is converted into analog form, by D/A converter so as to compare it with Va again. This procedure is repeated till we get $\mathrm{Va}=\mathrm{Vi}$. As the value of Vi is changed successively, this method is called as successive-approximation A/D converter.

		When the starts signal goes low the successive approximation register SAR is cleared and output voltage of DAC will be 0 v . When start goes high the conversion starts. After starts, during first clock pulse the control circuit set MSB bit so SAR output wiil be 10000000 . This is connected as input to DAC so output of DAC is compared with Vin input voltage. If $\mathrm{V}_{\mathrm{DAC}}$ is more than Vin the comparator output -Vsat, if $\mathrm{V}_{\mathrm{DAC}}$ is less than Vin, the comparator output is + Vsat. If output of DAC i.e. $V_{D A C}$ is $+V$ sat (i.e. unknown analog input voltage $V i n>V_{D A C}$) then MSB bit is kept set, otherwise it is reset. Consider MSB is set so SAR will contain 10000000. The next clock pulse will set next bit i.e. D6 bit is kept as it is, but if it -Vsat the D6 bit reset. The process of checking and taking decision to keep bit set or to reset is continued upto D0. Then the DAC input will be digital data equal to analog input. When the conversion is finished the control circuits sends out an end of conversion signal and data is locked in buffer register.	
Q. 5		Attempt any TWO of the following :	12-M
	(a)	(i)Convert the following binary number $(11001101)_{2}$ into Gray Code and Excess-3 Code.	2M

BOARD OF TECHNICAL EDUCATION
tified)

Ans:	Ainary to Gray Code (11001101) $=(10101011)_{2}$ Gray code $\begin{array}{llllll} 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 \\ -1 & 2 & 2 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{array} 1$ Binary to Excess-3 code Step1: Binary to Decimal (11001101) 2 to Decimal $\begin{aligned} (11001101)= & +1 \times 2^{2}+1 \times 2^{6}+0+0+0+1 \times 2^{3} \\ & +1 \times 2^{2}+0+1 \times 20 \\ & =(288+64+8+4+1 \\ & (205) 10 \end{aligned}$ Step 2: Decimal to $B C D$ $\text { Add } 3+\begin{array}{ccc} \frac{2}{4} & \frac{0}{1} & \frac{5}{1} \\ 0010 & 0000 & 0101 \\ 0011 & 0011 & 011 \\ \hline 010110011 & 1000 \\ \hline \end{array}$ Excess 3 code	1M each conversion
	(ii)Perform the BCD Addition. $(17)_{10}+(57)_{10}$	2M
Ans:		$1 / 2$ Each step
	(iii)Perform the binary addition. $(10110 \bullet 110)_{2}+(1001 \bullet 10)_{2}$	2M
Ans:	$\begin{aligned} & 10110.110)_{2}-(1001.10)_{2}=(100000.010)_{2} \\ & 11111 \\ & 10110.110 \\ & +\quad 1001.10 \\ & \hline 100000.010 \\ & \hline \end{aligned}$	2M
(b)	Design a 4bit ripple counter using JK flip flop, with truth table and waveforms.	6M
Ans:	Circuit Diagram:	2M

Truth Table:

State	Q_{D}	Q_{C}	Q_{B}	Q_{A}
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	1	0
6	0	1	1	0
7	1	0	0	1
8	1	0	1	0
10	1	0	0	0
11	1	1	1	0
12	1	1	1	0
13	1	1	1	0
15	1	0	0	0

Timing Diagram / Waveforms:

(ii) 1001

Assume (V_{fs}) full scale range of voltage is 5 V
Ans:
Given:

$$
\mathrm{VR}=\mathrm{Vfs}=5 \mathrm{~V}
$$

Formula Used:

$$
\mathrm{Vo}=-\mathrm{VR}\left(\mathrm{~B} 1.2^{-1}+\mathrm{B} 2.2^{-2}+\mathrm{B} 3.2^{-3}+\mathrm{B} 4.2^{-4}\right)
$$

1. 1011

$$
\mathrm{Vo}=-\mathrm{VR}\left(\mathrm{~B} 1.2^{-1}+\mathrm{B} 2.2^{-2}+\mathrm{B} 3.2^{-3}+\mathrm{B} 4.2^{-4}\right)
$$

.tified)

		Boolean expression of given truth Table.

Inputs				
\mathbf{s}_{3}	s_{2}	s_{1}	\mathbf{s}_{0}	\mathbf{Y}
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

3) $\mathrm{Y}=1$ indicates sum is greater than 9 . We can put one more term, C_out in the above expression to check whether carry is one.
4) If any one condition is satisfied we add 6(0110) in the sum.
5) With this design information we can draw the block diagram of BCD adder, as shown in figure below.

Truth

Table: 2M

